
Decoding Lua: Formal Semantics for the Developer and the Semanticist
Mallku Soldevila1, Beta Ziliani1, Bruno Silvestre2, Daniel Fridlender3 and Fabio Mascarenhas4

1FAMAF/UNC and CONICET, 2INF/UFG, 3FAMAF/UNC, 4DCC/UFRJ

Abstract

We provide formal semantics for a large subset of
the Lua 5.2 programming language. We validate
our model by mechanizing it and testing it against
the test suite of the reference interpreter.

About Lua

-Lightweight imperative scripting language,
featuring dynamic typing, automatic memory
management, data description facilities, and
metaprogramming mechanisms to adapt the
language to specific domains [5].

-Used in diverse applications: game
development [3], plugin development (the photo
editing software Adobe Photoshop Lightroom,
and the type-setting system LuaTex), web
application firewalls, and embedded systems.

Modular semantics

s ::= if e then s else s end | ; | ...
v ::= nil | bool_literal | ...
e ::= v | e binop e | ...
binop ::= and | or | ...

v /∈ {nil, false}
if v then s1 else s2 end →s s1

v ∈ {nil, false}
if v then s1 else s2 end →s s2

op ∈ {and, or}
v op e →e δ(op, v , e)

Figure 1: Syntax and semantics of (some) stateless statements
and expressions

s ::= ... | local x = e in s end | x = e

σ’ = (r , v), σ
σ : local x = v in s end →s_σ σ’ : s [x\r]

σ’ = σ[r := v]
σ : r = v →s_σ σ’ : ; σ : r →e_σ σ : σ(r)

Figure 2: Syntax and semantics of local variable definition and
assignment.

E ::= [] | if E then s else s end
| local x = E in s end |
| x = E | E binop e | unop E

Figure 3: Evaluation contexts.

e →e e′

σ : E [[e]] 7→ σ : E [[e′]]
s →s s ′

σ : E [[s]] 7→ σ : E [[s ′]]

σ : s →s_σ σ′ : s ′

σ : E [[s]] 7→ σ′ : E [[s ′]]
Figure 4: Semantics of programs.

Lightweight mechanization with
PLT Redex

File Features tested Coverage
calls.lua functions and calls 77.83%

closure.lua closures 48.5%
constructs.lua syntax and 63.18%

short-circuit opts.
events.lua metatables 90.4%
locals.lua local variables 62.3%

and environments
math.lua numbers and 82.2%

math lib
nextvar.lua tables, next, and for 53.24%
sort.lua (parts of) table 24.1%

library
vararg.lua vararg 100%

Figure 5: Lua 5.2’s test suite coverage.

Concepts modelled

The features modelled include:
-Every type of Lua value, except coroutines and
userdata (see below);
-Metatables;
- Identity of closures;
-Dynamic execution of source code;
-Error handling;
-A large collection of the services of the standard
library.

Conclusion and future work

The formal semantics given, together with its
lightweight mechanization, make up a tool that both
semanticists and Lua developers can use for under-
standing and extending the features of the language.
Future work includes:

-Adding missing features (coroutines, new
operators and metamethods of version 5.3,
garbage collector).
-Tools for assisting in the translation of our PLT
Redex model to a proof assistant (possibly Coq).
-Use the model to give formal guarantees of
correctness of tools for code analysis and
language extensions, such as Luacheck, Ravi and
Typed Lua [4].

References

[1] M. Felleisen, R. B. Finlder, and M. Flatt.
Semantics Engineering with PLT Redex.
The MIT Press, 2009.

[2] A. Guha, C. Saftoiu, and S. Krishnamurthi.
The essence of JavaScript.
In ECOOP ’10, 2010.

[3] R. Ierusalimschy, L. de Figueiredo, and W. Celes.
The evolution of an extension language: a history of lua.
In Brazilian Symposium on Programming Languages,
2001.

[4] A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy.
A formalization of Typed Lua.
In DLS ’15, 2015.

[5] L. H. d. F. R. Ierusalimschy and W. Celes.
Lua – an extensible extension language.
Software: Practice and Experience, 26(6):635–652, 1996.

Acknowledgements

We are very grateful to the anonymous reviewers for their in-
sightful feedback.
This poster was done using the template originally created by
the Computational Physics and Biophysics Group at Jacobs
University, and modified by Nathaniel Johnston (nathaniel@
nathanieljohnston.com).

nathaniel@nathanieljohnston.com
nathaniel@nathanieljohnston.com

